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BACKGROUND: Environmental contamination by fluorinated chemicals, in particular chemicals from the per- and polyfluoroalkyl substances (PFAS)
class, has raised concerns around the globe because of documented adverse impacts on human health, wildlife, and ecosystem quality. Recent studies
have indicated that pesticide products may contain a variety of chemicals that meet the PFAS definition, including the active pesticide ingredients
themselves. Given that pesticides are some of the most widely distributed pollutants across the world, the legacy impacts of PFAS addition into pesti-
cide products could be widespread and have wide-ranging implications on agriculture and food and water contamination, as well as the presence of
PFAS in rural environments.
OBJECTIVES: The purpose of this commentary is to explore different ways that PFAS can be introduced into pesticide products, the extent of PFAS
contamination of pesticide products, and the implications this could have for human and environmental health.
METHODS: We submitted multiple public records requests to state and federal agencies in the United States and Canada and extracted relevant data
from those records. We also compiled data from publicly accessible databases for our analyses.

DISCUSSION: We found that the biggest contributor to PFAS in pesticide products was active ingredients and their degradates. Nearly a quarter of all
US conventional pesticide active ingredients were organofluorines and 14% were PFAS, and for active ingredients approved in the last 10 y, this had
increased to 61% organofluorines and 30% PFAS. Another major contributing source was through PFAS leaching from fluorinated containers into pes-
ticide products. Fluorination of adjuvant products and “inert” ingredients appeared to be limited, although this represents a major knowledge gap. We
explored aspects of immunotoxicity, persistence, water contamination, and total fluorine load in the environment and conclude that the recent trend of
using fluorinated active ingredients in pesticides may be having effects on chemical toxicity and persistence that are not given adequate oversight in
the United States. We recommend a more stringent risk assessment approach for fluorinated pesticides, transparent disclosure of “inert” ingredients
on pesticide labels, a complete phase-out of post-mold fluorination of plastic containers, and greater monitoring in the United States. https://doi.org/
10.1289/EHP13954

Introduction
Pesticides are commonly used in the United States and around
the world to kill or suppress certain organisms on farmland and
in areas where people live and work. Although pesticides are of-
ten efficacious at killing or preventing the growth of target

organisms, they are widely regarded as causing serious unin-
tended harms to both humans and nontarget biota. In the United
States alone, roughly 450 million kg of pesticide active ingredients
were applied in an estimated 5.3 million cumulative km2-treatments
of farmland throughout the country in 2021.1

Therefore, the enormous potential for human exposure and
environmental contamination belies the importance of under-
standing complete product compositions and their environmen-
tal fate and transport. Pesticide products generally contain two
types of ingredients: active and “inert.” Active ingredients are
the primary components in pesticide products that kill or sup-
press the targeted organism.2 “Inerts” are every other ingredient
added to the pesticide product, including emulsifiers, solvents,
carriers, aerosol propellants, fragrances, and dyes.3 However,
far from being inert, many of these ingredients have chemical
properties that can influence the toxicity or alter the bioavailabil-
ity of the active ingredient or have unintended off-target effects
themselves to people and wildlife.4,5 Unlike active ingredients,
“inerts” are not required to be publicly disclosed on the pesticide
label6 and toxicity testing is limited.5 This lack of transparency
and insufficient toxicity testing—in the pesticide context and
many others—accomplishes two things from a public health per-
spective: It can a) hamper the ability of medical professionals to
effectively treat patients who fall ill following pesticide expo-
sure and b) shield companies from accountability regarding the
harms from their products.5,7,8

In agriculture, pesticide products are commonly applied with
adjuvants, which are separate products that can reduce drift/vola-
tilization, facilitate application, or enhance pesticidal effects of
pesticide products.9 Adjuvant ingredients are widely used in US
agriculture, as demonstrated by an analysis of usage data in the
state of California.9

Fluorination is used to modify chemical attributes, such as sta-
bility and lipophilicity, improve stereochemical specificity, and
increase residual activity of pesticide ingredients.10 Pesticide
active ingredients are commonly fluorinated, with insecticides and
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acaricides more likely to be highly fluorinated.11 Fluorination can
contribute to the molecular stability of active ingredients—both
in vivo and in the broader environment—and can influence lipo-
philicity, which can alter membrane permeability and binding
to target proteins.10 The most common chemotype for fluori-
nated active ingredients is a trifluoromethyl (−CF3) group fol-
lowed by a monofluoromethyl group (−CFH2).11

Numerous patents have demonstrated ways in which fluori-
nated “inerts” can expedite dispersal of the sprayed pesticide on
targeted surfaces such as leaves, aid in surfactancy, and facilitate
the penetration of the pesticide into living organisms.12 The fluori-
nation of inert ingredients can help prevent the formation of foam
in the pesticide formulation to ensure efficient spreading of the pes-
ticide after spraying,12,13 and fluorinated inerts are also used as pro-
pellants in aerosol pesticide products.14 Given that many adjuvant
and inert ingredients perform similar functions, it is assumed that
at least some adjuvant ingredients are fluorinated.15

One subset of fluorinated molecules is per- and polyfluor-
oalkyl substances (PFAS). PFAS are a serious environmental
health concern owing to their highly persistent nature,16 often
potent toxicities,17 potential to bioaccumulate,18 and widespread
presence in people, animals, and the broader environment.19,20

Through its PFAS Strategic Roadmap, the US Environmental
Protection Agency (EPA) in 2021 committed to not only facili-
tate the remediation of legacy PFAS contamination but also to
intervene to limit the introduction of unnecessary new PFAS into
the environment.21

Awidely used definition of PFAS comes from the Organisation
for Economic Cooperation and Development (OECD) and encom-
passes almost any chemical with at least one perfluorinated methyl
group (−CF3) or a perfluorinated methylene group (−CF2 − ).22,23

Given the broad nature of this definition, PFAS are often subca-
tegorized by the length of their carbon chain. For the purposes
of this commentary, we have further classified PFAS as long-
chain, short-chain, or ultrashort-chain, which respectively con-
tain ≥6, 4–5, and ≤3 fully fluorinated carbon atoms. Although
all PFAS are considered extremely persistent owing to the
strength of the carbon–fluorine bond, some may differ signifi-
cantly in other chemical properties, such as mobility, lipophilic-
ity, and potential to bioaccumulate.24

Given the diverse array of health impacts that have been
linked to PFAS exposure,25 it is important to understand the
extent to which the inclusion of carbon–fluorine bonds within
pesticide ingredients is impacting persistence and toxicity. When
proposing drinking water limits for six PFAS, the US EPA found
that reduced exposure would result in a lower prevalence of kid-
ney cancers, heart attacks, strokes, and developmental effects, as
well as a general reduction in harms to the immune, developmen-
tal, cardiovascular, hepatic, endocrine, metabolic, reproductive,
and musculoskeletal systems of US residents.26 The majority of
studies on PFAS toxicity have focused on just a few compounds,
but efforts to catalog the toxicity of other PFAS have indicated
shared toxicity end points.27,28

The purpose of this commentary is to explore ways that
PFAS can be introduced into pesticide products, the extent of
PFAS contamination, and the implications this could have for
human and environmental health. Here we have identified
multiple pathways by which PFAS are introduced into pesti-
cide products—both intentionally and unintentionally—and the
regulatory shortcomings that prevent a faithful accounting of the
risks posed by this class of chemicals. By focusing on pathways of
PFAS introduction, our goal with this commentary is to ultimately
identify ways that regulators could reduce PFAS in these products
and more fully account for their human and environmental health
harms in the pesticide registration process.

Methods

Information Sources Used in This Commentary
Information on the number of currently registered active ingre-
dients, fluorinated inert ingredients, and fluorinated adjuvant
ingredients were obtained from public records requests to various
state-level government agencies in the United States, US federal
agencies, and Canadian agencies and are cited in text in the
“Methods” or “Discussion” sections. Multiple publicly accessible
databases were also searched for relevant adjuvant ingredient infor-
mation andwater detections offluorinated active ingredients and are
also cited in text in the “Methods” and “Discussion” sections. Data
sources used in this commentary can be found in Table 1.

Additional Analyses Conducted for Active Ingredients
As of 31 December 2021, the US EPA had 1,157 pesticidal active
ingredients registered with the agency (Excel Table S1).29 Active
ingredients fell into three different categories: biopesticide, antimicro-
bial, and conventional. Biopesticides48 are naturally occurring chemi-
cals or living organisms—often used in organic agriculture—that do
not contain carbon–fluorine bonds. Antimicrobials49 are often used
indoors in relatively lower amounts. Conventional active ingre-
dients50 are often thought of as “typical” pesticides—mainly syn-
thetic chemicals used widely in agriculture, around people’s
homes and in green spaces to kill unwanted insects, plants,
rodents, or fungi. These ingredients have a higher potential for
broader environmental contamination because they are often
used outdoors and in higher quantities than biopesticides or anti-
microbials.51,52 Therefore, we curated the list of active ingre-
dients we received in our public records request down to 471
unique, conventional active ingredients to determine how many
were organofluorines or PFAS (Excel Tables S1–S3).

In curating our list of 1,157 pesticidal active ingredients down
to 471 unique, conventional active ingredients, we

• Mined US EPA’s Pesticide Product and Label System (PPLS)
database,53 the Pesticide Chemical Search tool,54 and other
online materials to identify and exclude any active ingredient

Table 1. Public records, communications, and database sources used in this
commentary.

Section Sources

Active ingredients US EPA FOIA response29
Inert ingredients US EPA FOIA responses,30,31 US EPA InertFinder

Database,32 Health Canada PMRA List of
Formulants,33 email communication with Health
Canada’s Senior Scientific Screening Officer
(N. Donley, personal communication)

Adjuvant ingredients TELUS Label Search,34 California Department of
Pesticide Regulation Public Records Act
Request,35 Washington State Department of
Agriculture Spray Adjuvant Ingredients List36

Storage container
leaching

Analytical testing reports from Eurofins Lancaster
Laboratories Env, LLC.37–42 and Alpha
Analytical,43 US EPA. Analysis of PFAS in
selected mosquito control products from the
Maryland Department of Agriculture,44 US
EPA. Verification Analysis for PFAS in
Pesticide Products45

Water contamination USGS. Dissolved Pesticides in Weekly Water
Samples from the NAWQA Regional Stream
Quality Assessments (2013–2017)46

Pesticide usage USGS. Preliminary estimated annual agricultural
pesticide use for counties of the conterminous
United States47

Note: EPA, Environmental Protection Agency; FOIA, Freedom of Information Act;
NAWQA, National Water-Quality Assessment; PFAS, per- and polyfluoroalkyl substances;
PMRA,Canada’s PestManagementRegulatoryAgency;USGS,USGeological Survey.
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that met the definition of an antimicrobial or biopesticide.
Antimicrobial pesticides are substances ormixtures of substances
used to destroy or suppress the growth of harmful microorgan-
isms, such as bacteria, viruses, or fungi, on inanimate objects and
surfaces. Biopesticides are any plant incorporated protectant
(PIP), live organism, or naturally occurring extracts from live
organisms (e.g., peptides, alcohols, oils, pheromones, extracts).
We also excluded any active ingredient whose sole purpose was
not for pesticidal use, such as nitrogen stabilization.

• Identified and excluded different precursor forms of the same
pesticide because the active pesticide molecule was identical
(e.g., dicamba was only represented once in our list even
though it had many different registered salt forms). We also
identified and excluded different purified isomers or enan-
tiomers that were present in mixtures of a previously regis-
tered active ingredient (e.g., alpha-cypermethrin and zeta-
cypermethrin were excluded from our list because they were
simply two isomers that were present in the previously regis-
tered cypermethrin). We also identified and excluded active
ingredients that were structurally identical but in a different
phase from an active ingredient on our list (e.g., amorphous
silica and silicon dioxide were reduced down to a single entry
on our list).

• Identified and removed products that only had “technical” or
“manufacturing use only” products registered, because we
were interested only in active ingredients used in end-use
products.

US Geological Survey Water Data Analysis
Between 2013 and 2017, the US Geological Survey (USGS) ana-
lyzed 482 wadable streams for pesticide contaminants in five
regions of the United States (Northwest, California, Midwest,
Southeast, and Northeast). The methodology used is described in
five regional reports,55–59 and data are available for downloading
from the USGS website.46 We manually identified all analyzed
active ingredients that met the OECD PFAS definition, as well as
degradates (metabolites) of those active ingredients, in the site’s
Table 3 text file and extracted the available detection and water
concentration data on those chemicals from Data Tables 4–8 on
the same site.46 Data extracted and compiled included the number
of positive detections and maximum detected concentrations for
29 analytes (13 PFAS active ingredients plus 16 fluorinated
degradates).

Discussion

How PFAS Are Introduced into Pesticides
We sought to document and understand ways in which PFAS
were introduced into pesticides and the extent of PFAS contami-
nation in pesticide products. The following sections detail our
analyses. There are multiple ways that PFAS can be introduced
into pesticide products, which can facilitate their deposition into
the environment. We have broadly categorized these PFAS con-
tamination pathways as intentional and unintentional. Below are
examples of each.

Intentional addition of PFAS. Active ingredients. Of the
471 unique, conventional active ingredients that were cur-
rently registered in the United States, 107 (23%) contained at
least one carbon–fluorine bond and 66 (14%) met the OECD
definition22 of PFAS (Figure 1 and Table 2; Excel Tables S3–
S5) (see the “Methods” section for details). Of the 54 conven-
tional active ingredients that had been approved in the most
recent 10 y, the proportion of fluorination increased dramati-
cally with 33 (61%) classified as organofluorines and 16 (30%)
as PFAS (Figure 1 and Table 2; Excel Tables S3–S5).

The trend of increasing fluorination of active ingredients in
the United States in recent years was consistent with trends in
other countries10 and with the ability of fluorination to impart
chemical properties on pesticides that were desirable to manufac-
turers and users, particularly the addition of a −CF3 moiety.11 In
fact, most of the PFAS active ingredients contained a −CF3
group as the sole criteria for their inclusion as PFAS in this com-
mentary (Table 2 and Figure 2; Excel Tables S4 and S5).

Two active ingredients stood out as having a significantly higher
degree of fluorination than the others: broflanilide and pyrifluquina-
zon (Figure 2; Excel Tables S4 and S5). Both contain a highly fluo-
rinated side chain that is structurally similar to hexafluoropropylene
oxide,62 a component of the highly toxic, known water contaminant
GenX. However, despite both having a similar degree of fluorina-
tion, the parent molecules differ in their relative persistence as des-
ignated by the US EPA. Broflanilide is considered highly persistent,
with the parent molecule having soil and aqueous half-lives in the
range of 5–6 y.63 The US EPA has found that the parent broflanilide
and its fluorinated degradates have the potential to bioconcentrate
and are likely to accumulate in the environment over time.63

Despite these alarming chemical properties, the US EPA concluded
that the pesticide met the registration standard under US pesticide

Figure 1. Percentage of conventional US pesticide active ingredients that were organofluorines or PFAS. The striped bars denote the percentage of all US-
approved active ingredients (n=471) that were organofluorines (left) or PFAS (right) as of 2021. The solid bars denote the percentage of active ingredients
approved between 2012 and 2021 (n=54) that were organofluorines (left) or PFAS (right). For all active ingredients, 107/471 (23%) were organofluorines and
66/471 (14%) were PFAS. For active ingredients approved between 2012 and 2021, 33/54 (61%) were organofluorines and 16/54 (30%) were PFAS. Note:
PFAS, per- and polyfluoroalkyl substances.
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law.63 The parent molecule of pyrifluquinazon, on the other hand, is
classified by the US EPA as nonpersistent, with soil and aqueous
half-lives ranging from 1–16 d.64 Extractable degradates were simi-
larly short-lived; however, sediment-bound degradates were charac-
terized as very persistent.64 No studies on the terminal fluorinated

degradates of pyrifluquinazon were analyzed by the US EPA,
prompting US EPA scientists to convey that “we are concerned that
the total accumulation of all PFAS degradates both known and
unknown will be a risk issue.”65

“Inert” ingredients. A public records request to the US EPA,
which the agency responded to in December of 2022, indicated
that the agency had 24 registered inert ingredients that it had identi-
fied as PFAS or that the agency suspected may be PFAS.30 The
provided list appeared to have been compiled of both PFAS inerts
and fluorinated inerts that were not PFAS. Since the US EPA pro-
duced the list of 24, the agency canceled 12 that were not in any
currently registered pesticide products66 and we identified one as
not having any carbon–fluorine bonds, leaving 11 currently regis-
tered organoflourine inert ingredients (Table 3).We confirmed this
list of 11 by searching for “fluoro” in the ingredient name field on
theUS EPA’s Inert Finder database.32

Of the 11 US EPA-registered organofluorine inert ingredients, 8
met the OECD definition of PFAS (Table 3 and Figure 2). Four of
these 11 ingredients were approved for both food and nonfood use,
whereas the rest were only for nonfood use.32 All the food-use orga-
nofluorine inerts had been exempted from a tolerance,67,68 meaning
that any level of these ingredients was legal on food. Interestingly, 5
of these organofluorine inerts were not in anyUS-registered pesticide
products, whereas 6 were present in 1–67 currently registered prod-
ucts (Table 3).31 Information on which specific products contained
these ingredients was considered “confidential business information”
by theUSEPA, so it was unclear whether these products werewidely
used or how theywere used.

Canada’s Pest Management Regulatory Agency (PMRA) has
compiled a list of currently registered inerts (which it calls “formu-
lants”) and updates that public list every 6 months.33 As of 1
October 2022, there were eight organofluorine inert ingredients
registered in the country, with seven being PFAS (Table 3). These
eight organofluorine inerts were present in anywhere from 1 to 20
Canadian pesticide products (N. Donley, personal communication)
(Table 3).

Notably, one inert ingredient approved in both the United
States and Canada for both food and nonfood use was the incredi-
bly persistent polytetrafluoroethylene (PTFE), known by the brand
name Teflon (Table 3 and Figure 2). Although chemical manufac-
turers and their consultants consider fluoropolymers like PTFE to
be less toxic than their nonpolymeric PFAS counterparts,69 other
researchers have identified serious concerns with their production
and use.70 For instance, PTFE can often be contaminated with non-
polymeric PFAS—at concentrations in the parts-per-million range,
well above human toxicity thresholds.70 This, coupled with its
extreme persistence and the inability to recover PTFE once it has
been dispersed, makes its use particularly problematic.

During peer review of this manuscript, the US EPA revised
the number of products it believes contain PTFE from the 14 it

Table 2. PFAS active ingredients approved in the United States and
associated registration dates.

CAS No. Registration date
Active ingredient

namea

50594-66-6;
62476-59-9

20 August 2018;
20 March 1987

Acifluorfen; sodium
acifluorfen

1861-40-1 22 March 1972 Benfluralin
352010-68-5 24 April 2015 Bicyclopyrone
82657-04-3 2 October 1985 Bifenthrin
1207727-04-5 14 January 2021 Broflanilide
63333-35-7 3 October 1985 Bromethalin
122453-73-0 19 January 2001 Chlorfenapyr
180409-60-3 27 June 2012 Cyflufenamid
400882-07-7 9 May 2014 Cyflumetofen
97886-45-8 18 June 1991 Dithiopyr
55283-68-6 2 May 1989 Ethalfluralin
120068-37-3 1 May 1996 Fipronil
104040-78-0 14 May 2007 Flazasulfuron
158062-67-0 26 September 2003 Flonicamid
79241-46-6 25 August 1986 Fluazifop-P butyl
79622-59-6 10 August 2001 Fluazinam
181274-17-9 29 September 2000 Flucarbazone-sodium
131341-86-1 5 October 1995 Fludioxonil
142459-58-3 8 April 1998 Flufenacet
62924-70-3 27 May 1983 Flumetralin
2164-17-2 28 May 1974 Fluometuron
239110-15-7 30 January 2008 Fluopicolide
658066-35-4 2 February 2012 Fluopyram
59756-60-4 31 March 1986 Fluridone
56425-91-3 4 December 1989 Flurprimidol
958647-10-4 13 March 2018 Flutianil
66332-96-5 12 March 1996 Flutolanil
69409-94-5 25 March 1983 Fluvalinate
72178-02-0;

108731-70-0
11 September 1987;

10 April 1987
Fomesafen; sodium salt

of fomesafen
76703-62-3;

91465-08-6
31 March 2004;

13 May 1988
gamma-Cyhalothrin;

lambda-cyhalothrin
86479-06-3 10 March 1994 Hexaflumuron
67485-29-4 30 September 1982 Hydramethylnon
173584-44-6 30 October 2000 Indoxacarb
141112-29-0 15 September 1998 Isoxaflutole
77501-63-4 1 April 1987 Lactofen
1417782-03-6 26 June 2019 Mefentrifluconazole
139968-49-3 3 August 2007 Metaflumizone
27314-13-2 19 March 1975 Norflurazon
116714-46-6 25 September 2001 Novaluron
121451-02-3 21 September 2001 Noviflumuron
1003318-67-9 31 August 2015 Oxathiapiprolin
42874-03-3 15 June 1981 Oxyfluorfen
219714-96-2 27 September 2004 Penoxsulam
183675-82-3 29 February 2012 Penthiopyrad
117428-22-5 30 November 2012 Picoxystrobin
29091-21-2 7 February 1992 Prodiamine
94125-34-5 3 May 1995 Prosulfuron
365400-11-9 9 August 2007 Pyrasulfotole
179101-81-6 24 April 2008 Pyridalyl
337458-27-2 3 January 2013 Pyrifluquinazon
447399-55-5 15 February 2012 Pyroxasulfone
422556-08-9 27 February 2008 Pyroxsulam
372137-35-4 3 September 2009 Saflufenacil
946578-00-3 6 May 2013 Sulfoxaflor
79538-32-2 17 January 1989 Tefluthrin
335104-84-2 29 November 2007 Tembotrione
112281-77-3 14 April 2005 Tetraconazole
1229654-66-3 10 March 2021 Tetraniliprole
88-30-2 21 August 1964 TFM

Table 2. (Continued.)

CAS No. Registration date
Active ingredient

namea

1220411-29-9 25 September 2020 Tiafenacil
122454-29-9 2 May 2007 Tralopyril
141517-21-7 20 September 1999 Trifloxystrobin
290332-10-4 29 September 2003 Trifloxysulfuron-sodium
68694-11-1 24 October 1991 Triflumizole
1582-09-8 4 December 1968 Trifluralin
126535-15-7 4 June 1996 Triflusulfuron-methyl

Note: CAS, Chemical Abstracts Service; EPA, Environmental Protection Agency;
PFAS, per- and polyfluoroalkyl substances; TFM, 3-trifluoromethyl-4-nitrophenol.
aData in the table were extracted from a public records request to the US EPA.29 From
this list, PFAS pesticides were manually identified and extracted for this table (see the
“Methods” section for more detail).
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told us in our earlier public records request (Table 3) to zero and
proposed to remove PTFE from its list of approved inert pesticide
ingredients.71 We believe this is good news for public health and
hope the agency is successful in finalizing that action.

Adjuvants. The US federal government does not regulate
adjuvants as pesticides.9 If an adjuvant product is to be used on
food crops, its ingredients may require a tolerance or exemption

from a tolerance under the Federal Food, Drug and Cosmetic Act
(FFDCA), but there is very little federal oversight.72

Some US states regulate adjuvant products. The most robust
system is in California, which requires adjuvants to be registered
as pesticides, submission of formulation information, and report-
ing of adjuvant use.9,73 Adjuvants are widely used in California:
Forty-one of the most widely applied 100 pesticide ingredients

Figure 2. Examples of PFAS chemicals approved for use in US pesticide products. The “highly fluorinated” grouping is the approved PFAS active ingredients
with the longest fluorinated chains. The “highest use” grouping is the approved PFAS active ingredients with the highest use by volume, as estimated by the
US Geological Survey (Excel Table S6). The “known water contaminants” grouping is the approved PFAS active ingredients that have been widely reported in
the literature and identified by government monitoring to be major water contaminants in the United States. The “fluorinated aromatics” grouping displays a
few examples of the approved PFAS active ingredients that have fluorinated aromatic structures in addition to a −CF3 moiety. The “‘inert’ ingredients” group-
ing displays the US- and Canada-approved inert ingredients that are present in the most pesticide products (Table 3). Structure images were obtained from US
EPA’s CompTox Chemicals Dashboard.60,61 Note: EPA, Environmental Protection Agency; PFAS, per- and polyfluoroalkyl substances.

Table 3. A list of organofluorine and PFAS inert ingredients approved in the United States and Canada and the number of registered products that contain
them.

CAS No. Ingredient namea PFAS
Food
use

Approved
in the
USA

Approved
in Canada

Products
in the

USA (n)
Products in
Canada (n)

75-37-6 1,1-Difluoroethane N Y Y Y 67 3
811-97-2 1,1,1,2-Tetrafluoroethane Y Y Y Y 37 15
9002-84-0 Polytetrafluoroethylene (PTFE; Teflon) Y Y Y Y 14b 2
29118-24-9 trans-1,3,3,3-Tetrafluoroprop-1-ene Y Y Y Y 3 20
188027-78-3 5H-1,3-Dioxolo[4,5-f]benzimidazole, 6-chloro-5-[(3,5-dimethyl-

4-isoxazolyl)sulfonyl]-2,2-difluoro
Y N Y N 0 NA

24937-79-9 Ethene, 1,1-difluoro-, homopolymer N N Y N 0 NA
42557-13-1 Poly(oxy(methyl(3,3,3-trifluoropropyl)silylene)), alpha-(trimeth-

ylsilyl)-omega((trimethylsilyl)oxy)-
Y N Y N 0 NA

593-70-4 Fluorochloromethane N N Y N 3 NA
63148-56-1 Siloxanes and silicones, Me 3,3,3-trifluoropropyl Y N Y N 1 NA
67786-14-5 2-Naphthalenesulfonic acid, 6-amino-4-hydroxy-5-{{2-(trifluoro-

methyl)phenylgazog-, monosodium salt
Y N Y N 0 NA

88795-12-4 1-Butanol, 4-(ethenyloxy)-, polymer with chlorotrifluoroethene,
(ethenyloxy)cyclohexane, and ethoxyethene

Y N Y N 0 NA

98-56-6 Parachlorobenzotrifluoride Y INO N Y NA 1
65530-85-0 Alpha-(cyclohexylmethyl)- omega-hydro-poly

(difluoromethylene)
Y INO N Y NA 1

131324-06-6 PTFE, alpha-chloro-omega-(1-chloro-1-fluoroethyl)- Y INO N Y NA 1
163440-89-9 PTFE, alpha-hydro-omega-(2,2-dichloro-2-fluoroethyl)- Y INO N Y NA 1

Note: CAS, Chemical Abstracts Service; INO, information could not be obtained; Me, methyl; N, no; NA, not applicable; PFAS, per- and polyfluoroalkyl substances; Y, yes.
aData in this table were obtained through database searches, personal communications, and public records requests.31–33
bAfter formally responding that 14 products contained PTFE, the US EPA has since publicly stated that zero products contain PTFE and has proposed to remove it from the list of
approved inert ingredients in the United States.
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are adjuvant ingredients.74 The high use of these ingredients indi-
cates that they may be a source of PFAS contamination in the
environment.

The only sources of information on adjuvant ingredients we
found came from the agrochemical industry and the few state-
level agencies in the United States that regulate them. The indus-
try views this information as proprietary, so publicly available in-
formation is scant. TELUS, a producer of agricultural industry
software, maintained a label database34 that at our date of search
encompassed 1,343 adjuvant products. An advanced search for
“adjuvant” products containing active ingredients with the term
“fluoro” returned zero results. However, it was unclear whether
all ingredients were disclosed on this database and whether full
chemical names were listed.

We also received public records fromCalifornia andWashington
State. An inquiry to the California Department of Pesticide
Regulation (CDPR) asking whether any adjuvants contained fluori-
nated ingredients elicited the response that “there are no adjuvant
products currently registered by DPR which contain fluorinated
chemical ingredients.”35 In 2020, the Washington State Department
of Agriculture developed a list of spray adjuvant ingredients that
identified 313 ingredients in state-registered adjuvant products.36

The Washington State Department of Agriculture requires only the
top three ingredients in adjuvant products to be disclosed to the
state,75 and our search of this partial ingredient list identified no fluo-
rinated ingredients.

Although we found no evidence to indicate that adjuvant
products contained fluorinated ingredients or PFAS, our dataset
was incomplete and regional, and we concluded that it does not
provide strong evidence that no adjuvant ingredients are fluori-
nated. Rather, the lack of transparency and oversight of adjuvants
meant that a robust dataset was not available.

Unintentional addition of PFAS. Leaching from storage
containers. The practice of fluorinating polyethylene plastic
containers to prevent permeability of aromatic chemicals started
as early as 1958.76 Today hundreds of millions of high density
polyethylene (HDPE) containers that contain agricultural prod-
ucts, personal care products, household cleaning supplies, home
improvement products, and food are fluorinated each year.77

The most common method of fluorinating hydrocarbon-based
plastics is post-mold fluorination,78 where already molded con-
tainers are treated with fluorine gas under high temperature and
pressure.

The goal of post-mold fluorination is to swap out the carbon–
hydrogen bonds of the HDPE to carbon–fluorine bonds in a thin
layer on the surface of the plastic to enhance its barrier properties.
If there is any oxygen or water in the fluorination chamber, then
the fluorination process will form perfluorinated structures.

In 2011, researchers discovered that a subset of PFAS, per-
fluorinated carboxylic acids (PFCAs), were formed during the
direct post-mold fluorination of HDPE containers when trace
amounts of oxygen were present.77 Eight years later, Public
Employees for Environmental Responsibility (PEER) discovered
that the insecticide Anvil 10+10 contained perfluorooctanoic
acid (PFOA) and hexafluoropropylene oxide dimer acid (HFPO-
DA).79 This finding spurred the US EPA to test the leaching
potential of fluorinated HDPE containers that were used to store
pesticides, and the agency identified eight PFCAs leaching from
various containers—with total concentrations in the 10–60 ppb
range.80 The US EPA’s findings that fluorinated HDPE contain-
ers leach PFCAs has been reproduced by other groups and is now
a well-established contamination pathway for contents stored in
these containers.81 It is estimated that 20%–30% of all hard plas-
tic containers used in the agricultural sector are fluorinated,82 ele-
vating concerns about widespread PFAS contamination.

Since PEER’s initial testing of Anvil 10-10 found PFAS,
many other groups have tested and found long- and short-chain
PFAS in multiple pesticide products in a manner that is consistent
with container leaching (Table 4). It should be noted that the
results of this testing by different groups have produced conflict-
ing results that appear to depend on the analytical methodology
used and where the testing was conducted, affirming the difficulty
of testing complex mixtures such as pesticide products for PFAS.

In late 2023, the US EPA used its authority under the Toxic
Substances Control Act (TSCA) to prohibit the production of
multiple PFAS in the container fluorination process.83 Although
we believe this strong action would have been an enormous bene-
fit for public health, the US EPA’s action was overturned by a
federal appellate court, and it is unclear whether the agency will
pursue further action under a different legal mechanism.84

Other potential sources. Although leaching of PFAS from flu-
orinated containers appears to be the primary contamination pathway
of long- and short-chain PFAS into pesticide products, the testing
that has been conducted to date indicates there are other sources of
contamination.Multiple groups have found that some pesticides con-
tain perfluorinated sulfonic acids (PFSAs) (Table 4). As mentioned
above, container fluorination has only been demonstrated to generate
PFCAs that are available for leaching.80 Therefore, the presence of
PFSAs in some products—none of which were approved active or
inert ingredients (Table 3; Excel Table S1)—indicates that there are
other sources of unintentional contamination.

A recent study on serum levels of long-chain PFAS found
that both PFSAs and PFCAs were significantly higher in female
Danish greenhouse workers compared with a female Danish
urban population measured during the same time period.85 The
authors concluded that this disparity was likely due to differences
in exposure to agricultural pesticide formulations and proposed
that pesticides may be an important source of long- and short-
chain PFAS exposure to agricultural workers.

More research is needed to examine other potential sources
for introduction of long- and short-chain PFAS into pesticide
products. It is possible that the solvents or other components used
in the preparation of some pesticide products could unknowingly
be contaminated with PFAS.

Manufacturing by-products and impurities are another poten-
tial source of PFAS in pesticides. US EPA regulations allow pesti-
cide products to contain impurities as long as they are <1,000 ppm
and not of “toxicological significance.”6 Toxicological signifi-
cance is defined with regard to impurities that also happen to be
known pesticides86; however, its meaning is not formally defined
for other impurities. The US EPA views any concentration of an
impurity meeting the agency’s PFAS definition as toxicologically
significant, requiring disclosure.87 Yet it is unclear whether this
reporting requirement is known among the industry or whether
companies even know about PFAS impurities in their products,
given that many pesticide products contain undisclosed PFAS
ingredients (Table 4).88

Consequences of PFAS in Pesticides
In addition to documenting sources of PFAS in pesticide products,
we sought to understand how PFAS in pesticide products could be
impacting human and environmental health in the United States
and beyond. Although a lot of knowledge gaps still exist, the avail-
able data are cause for concern. It is our view that PFAS in pesti-
cides, particularly PFAS active ingredients, may be having
unintended impacts on environmental and public health that must
be mitigated or eliminated to prevent irreversible impacts. Below
are examples of potential impacts we have identified.

Immunotoxicity. The immune system is highly vulnerable to
exposure to chemical toxicants, particularly during development
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and in older adults.89 Long- and short-chain PFAS that have been
extensively studied—such as PFOA, PFOS, and perfluorohexane-
sulfonic acid (PFHxS)—are known to harm the immune system,
weaken the antibody response to vaccinations, and increase the
risk of infectious disease.90,91 Studies of impacts on the immune
system indicate that it is one of the most sensitive targets of
PFAS exposure,23,92 and both the US EPA and the European
Food Safety Authority (EFSA) have identified immunotoxicity as
the most potent adverse effect to humans from exposure to certain
PFAS.90 Given the documented sensitivity of the immune system
to PFAS exposure, and that immunotoxicity studies are com-
monly waived during pesticide registration reviews,93 our analy-
sis focused on this specific health end point. However, we note
that with the myriad health effects linked to PFAS exposure,
other health end points will likely be of additional interest with
regard to fluorinated pesticides.

In 2007, following recommendations from the National
Research Council and the US EPA’s Science Advisory Panel,94

the US EPA required all pesticide active ingredients to be subject
to T cell–dependent antibody response testing—which the agency
uses as a surrogate for immunotoxicity in general.95 Six years af-
ter imposing this requirement, the pesticide industry requested
that the US EPA conduct a retrospective analysis of the useful-
ness of the immunotoxicity assay in pesticide registration deci-
sions.96 In its 2012 analysis, the US EPA found that, of a
representative sample of 155 pesticides that had immunotoxicity
testing, the agency only considered 15 (10%) to be immuno-
toxic.96 The US EPA’s analysis further found that the 15 immu-
notoxicity findings did not influence the outcome of the
pesticides’ risk assessment. Following this analysis, the US EPA
indicated that it would be receptive to waiving immunotoxicity
studies for pesticide active ingredients.96 Reflecting this position,
between 2012 and 2018, the US EPA granted 223 of 229 waiver
requests (97%) for immunotoxicity testing of pesticide active
ingredients.93

However, lost in the US EPA’s retrospective analysis, con-
ducted before much of the public or regulatory awareness of the
health risks of PFAS, was the fact that 7 of the 15 immunotoxic
active ingredients (47%) were organofluorines and 6 of 15 (40%)
were PFAS.96 That compares with 20% and 13% of conventional
pesticide active ingredients that were respectively organofluor-
ines or PFAS as of 2012 (Excel Table S3). Immunotoxic effects
have also been reported in the peer-reviewed literature for several
fluorinated pesticides, including bifenthrin, fipronil, flupyradifur-
one, and flonicamid.10

Troublingly, the number of active ingredients that are fluori-
nated or that meet the definition of PFAS has increased consider-
ably from 2012 to the present (Figure 1)—the very time period that
the US EPA granted 97% of waiver requests for immunotoxicity
study requirements.93 This suggests that fluorinated or PFAS
active ingredients may be more likely to be immunotoxic than
other types of active ingredients and that any associated immuno-
toxicity may not be accounted for owing to the lack of requirement
for scientific study.

Environmental fate. All PFAS contain perfluoroalkyl moi-
eties that are highly stable in the environment.16 Even a single
−CF3 or a difluoromethylene (−CF2) moiety in a pesticide
active ingredient can resist degradation under highly stringent
conditions.97 This all but assures that most PFAS molecules
will persist in the environment in perpetuity or break down into
a degradate that will similarly persist in perpetuity.16

This makes it particularly important to fully understand the
metabolic life cycle of fluorinated pesticides in vivo and in the
environment. For example, highly persistent, fluorinated degra-
dates of the PFAS pesticide fipronil are often found at much higherT
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concentrations in human serum, plasma, and urine98–100 and are
widespread in the environment.101,102 These fluorinated degradates
are also more persistent103 and more toxic to a wide range of taxa,
including mammals, than the parent pesticide ingredient.100,104,105

Therefore, a faithful accounting of the pesticide degradates that
form within organisms and in the broader environment is essential
for proper risk evaluation, particularly for degradates that are
highly persistent.

In assessing risk to humans and the environment from the use of
a pesticide, the US EPA will estimate exposure to the parent active
ingredient and some of its degradates. Which degradates to analyze
in the risk assessment is determined via multiple degradation stud-
ies—often hydrolysis and photodegradation studies to understand
abiotic breakdown and biotic metabolism studies in the terrestrial
and aquatic environment.106 According to US EPA guidelines, the
suggested duration of these degradation experiments range from
5 to 30 d for the abiotic degradation studies107,108 and 100 to 120 d
for the biotic metabolism studies.109,110

Analyzing the degradation of a chemical over the span of 1–4
months gives the risk assessor an incomplete picture of chemical
transformations that happen months or years later. For persistent
pesticides and those with persistent degradates, there can be sig-
nificant uncertainty around what the intermediate and terminal
degradates are and how long it takes for terminal degradates to
form.111,112 Current test guidelines were not designed with
highly persistent substances in mind, and test duration is specif-
ically cited as one way that limits our understanding of how
chemical metabolism proceeds from the parent molecule to its
terminal degradates.113,114

Even known highly persistent degradates are sometimes omit-
ted from US EPA risk assessments of active and inert pesticide
ingredients. The US EPA will often identify which degradates
are of toxicological concern either by assessing the acute toxicity
of the degradate(s) or conducting a quantitative structure activity
relationship to predict toxicity to certain taxa.115 However, this
practice can end up essentially ignoring the release of highly per-
sistent chemicals into the environment. For example, with the
PFAS active ingredient sulfoxaflor, the US EPA found that
highly persistent fluorinated degradates were expected to contam-
inate ground and surface water; however, it concluded that the
only chemical relevant to assessing ecological risk was the parent
molecule because the other degradates were less acutely toxic to
aquatic organisms.116 Similarly, the US EPA conducted a quanti-
tative structure activity relationship for the fluorinated degradates
of the PFAS active ingredient bicyclopyrone and determined that
the only chemical of ecotoxicological concern was the parent
molecule.117

The persistence and toxicity of degradates are rarely, if ever,
accounted for in the approval of fluorinated “inert” ingredients. A
public records request for the degradate/metabolite studies reviewed
by the US EPA to support the approval or continued approval of
five PFAS inert ingredients [Chemical Abstracts Service (CAS)
numbers 42557-13-1, 9002-84-0, 63148-56-1, 67786-14-5, and
188027-78-3] returned no relevant records.118

We believe that basing the ecotoxicological relevance of a
highly persistent degradate on a limited number of acute toxicity
studies or the presence/absence of an active structural site is
likely to miss key risks. Pesticide degradates are widespread in
the environment119 and, in many cases, are found in concentra-
tions higher than the parent molecule.120 There can be serious
consequences if the uncertainty involved in a pesticide approval
decision ultimately leads to an underestimation of risk coming
from pesticide degradates. The generation of fluorinated degra-
dates that have half-lives in the decades or centuries means that
any release into the environment will likely be irreversible and

will be of ongoing concern if those degradates are found to be
more toxic than previously thought. This has led some researchers
to propose introducing new regulatory hazard categories that accu-
rately reflect relative persistence of a chemical and its degradates
and that high persistence alone should be a basis for regulation irre-
spective of the toxicities that have thus far been identified.121,122

Water contamination. Although most PFAS active ingre-
dients (Table 2) have not been monitored for their presence in the
environment across the United States, some older PFAS active
ingredients have been actively monitored and found throughout
the country. Bifenthrin and fipronil, first approved in 1985 and
1996, respectively, are among the most widely detected pesti-
cides in US streams, lakes, and rivers, and both are often found at
levels that exceed aquatic safety thresholds.101,123–125 In beeswax
samples taken from commercial beehives in multiple US states,
98% contained the 1980s-era PFAS pesticide fluvalinate.126 The
older PFAS pesticides isoxaflutole and penoxsulam, and their flu-
orinated degradates, have been detected in groundwater near sites
where they are used.127,128 Despite making up only 1% of the
total applied mass of pesticides that are found in California
waters, the PFAS pesticides cyhalothrin and bifenthrin account
for 90% of the applied toxicity to aquatic life, indicating they are
likely having an outsized impact on aquatic health.129

To look more generally at the environmental presence of PFAS
active ingredients, we compiled and analyzed USGS data that tested
for the presence of a wide variety of pesticides in nearly 500
streams across five regions of the United States between 2013 and
2017 (see the “Methods” section for details).46 Of the 225 pesticide
compounds tested in water samples, 13 were PFAS active ingre-
dients and 16 were their fluorinated degradates (29 total PFAS ana-
lytes). Of those tested, 27 PFAS analytes (93%) from 12 PFAS
active ingredients were found in US streams (Table 5). Fipronil
and isoxaflutole were most prevalent, whereas isoxaflutole and
trifloxystrobin were found in the highest concentrations. Only
1 of the 13 tested PFAS active ingredients had >453,000 kg of
annual use in US agriculture during the tested time period and
many had <45,300 kg of annual use,130 indicating that these
are not highly used active ingredients relative to many others
used in agriculture. This suggests that the prevalence of these
fluorinated pesticides and degradates in waterways cannot be
explained by high agricultural use alone.

Only 13 PFAS active ingredients—of 66 conventional active
ingredients that are currently registered (Table 2)—have been
actively tracked in surface water across the United States in
recent years, and 12 have been found (Table 5). Nearly all of
these 13 tested PFAS active ingredients have been registered for
>20 y (Excel Table S3), suggesting that the increase in fluori-
nated pesticide approvals in recent years (Figure 1) is having
unknown consequences with regard to water quality. Because of
this, we believe that in-depth, targeted monitoring studies of all
PFAS pesticides and their fluorinated degradates in the United
States is critical.

Total organic fluorine in the environment. Increasing scru-
tiny of PFAS contamination of drinking water, and sources for
drinking water, has led to increasing research on organic fluorine
compounds in the environment and biota. Analytical measure-
ments of PFAS have typically been limited to targeted testing for
a few dozen PFAS chemicals. Studies that have done targeted
PFAS testing in conjunction with total organic fluorine measure-
ments have found that targeted testing is capturing only a small
portion of the total organofluorine load in the environment and
biota.131 Not only have many studies found that levels of total or-
ganic fluorine are increasing, but the fraction of samples attrib-
uted to unknown organofluorine chemicals is often high and has
also been increasing in recent years.131–133
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This indicates that new or unidentified PFAS are increasingly
contributing to the overall organofluorine exposure to people and
the environment. Increasingly, this unknown total organic fluorine
fraction is thought to be coming from short- and ultrashort-chain
PFAS,134–136 which we have defined as respectively containing 4–5
and ≤3 fully fluorinated carbon atoms. Short- and ultrashort-chain
PFAS are also generally more difficult to remove from contami-
nated water sources by commonly used filtration methods, making
any resulting contamination potentially more difficult to rec-
tify.137,138 Importantly, the presence of ultrashort-chain PFAS in the
environment does not correlate well with the presence of long- and
short-chain PFAS, indicating that ultrashort-chain PFAS are coming
from different sources.135,139

Given that most of the PFAS active pesticide ingredients in the
United States contain a −CF3 moiety, it is possible that many of
these active ingredients will eventually break down into ultrashort-
chain PFAS as their terminal fluorinated degradates. One such
degradate is trifluoroacetic acid (TFA), a highly persistent and mo-
bile chemical that is a known water135,139 and food140 contaminant
and has been detected in several wildlife species.141,142 A study
of Norwegian wildlife found TFA to be a major contributor to total
organic fluorine levels in animals.141 TFA is abundant in human
serum and urine samples,143,144 and exposure to people is thought
to occur primarily via contaminated drinking water and indoor
household dust.144

TFA is a known metabolic by-product of some fluorinated
pesticides,24,97 and TFA levels in waterways and food even cor-
relate strongly with pesticide use.140,145 Organically grown food
has also been found to have lower levels of TFA than food grown
with synthetic pesticides.140 A study by the German Environment
Agency found that, when considering the 28 pesticide active
ingredients approved in Germany that have a −CF3 group (and
could potentially metabolize into TFA), up to 500 metric tons of
TFA pollution could be generated annually in the country just
from pesticide degradation.146

With 66 PFAS active ingredients approved in the United
States—and the United States having much higher pesticide use
than all countries in the European Union combined147—the
potential TFA pollution in the United States coming from pesti-
cides is likely significantly greater than that of Germany. The
USGS estimates that anywhere from 10.4 to 15.9 million kg of
PFAS active ingredients are used across the United States each
year (Excel Table S6)47—the vast majority of which contain at
least one −CF3 group and could potentially metabolize into TFA
or other persistent, fluorinated water contaminants. Given the an-
nual volume of use, pesticide active ingredients have the potential
to contribute significantly to the presence of ultrashort-chain
PFAS and, by extension, the total organic fluorine load in the envi-
ronment and biota.

Regulatory Recommendations
• Based on ample research and scientific testing, we believe
that post-mold fluorination of plastic containers cannot be
done without producing harmful PFAS that are available for
leaching. This practice should be discontinued and substi-
tuted with other options, such as barrier methods for plastic
that do not use fluorine, and possibly in-mold fluorination if
it is found not to produce PFAS.

• The United States and other countries must require that all pes-
ticide ingredients, including inerts, and their relative propor-
tions be disclosed on pesticide labels and material safety data
sheets. The American Medical Association made this same
suggestion nearly 30 y ago in an effort to protect the public, to
no avail.148 It is our view that the pesticide industry should not
be allowed to hide behind spurious claims of confidentiality at
the expense of the public’s knowledge of the potentially harm-
ful chemicals in widely available products.

• Immunotoxicity studies should no longer be waived for fluo-
rinated active ingredients or inerts, and the US EPA should
issue a data call-in for any pesticide ingredients that do not
have the necessary testing in place.

• All PFAS pesticides, and all intermediate and terminal
degradates, must be fully evaluated for environmental per-
sistence, and the most persistent ones, such as broflanilide,
should be mitigated heavily and targeted for replacement
with nonchemical or less persistent alternatives. This can be
modeled after a P-sufficient framework121 to prevent poten-
tial devastating consequences of releasing highly persistent
chemicals with no means for recovery.

• The US federal government must expand environmental
monitoring and biomonitoring programs to include all PFAS
pesticides to gather timely data on their bioaccumulation and
their potential impact on human and ecosystem health.

• Once it identifies all terminal and intermediate degradates
from PFAS pesticides, the US EPA must assess the cumula-
tive impacts from fluorinated degradates that are common to
multiple active ingredients, such as TFA. The US EPA must
also assess how the cumulative use of all fluorinated pesti-
cides can impact the total organic fluorine load in the envi-
ronment and food.

Table 5. PFAS analytes tested in US surface waters by the USGS
between 2013 and 2017, how often they were detected, and the maximum
concentration identified.

Active
ingredienta Fluorinated analyte

Detections
(n)b

Max conc
(ng/L)

Bifenthrin Bifenthrin 10 10.7
cis-Cyhalothric acidc 17 961.4

Fipronil Fipronil 847 61.8
Desulfinylfipronil 342 10.6
Fipronil sulfide 441 10.6
Fipronil sulfone 754 18.1
Dechlorofipronil 0 —
Desulfinylfipronil amide 29 14.0
Fipronil amide 762 84.1
Fipronil sulfonate 8 72.5

Flubendiamided Flubendiamide 79 148.9
Deiodo flubendiamide 2 4.9

Fluometuron Fluometuron 8 229.5
Hydroxy mono demethyl

fluometuron
2 6.4

4-Hydroxy-tert-fluometuron 1 7.4
Hydroxyfluometuron 1 3.9
Demethyl fluometuron 5 5.1

Indoxacarb Indoxacarb 1 3.4
Isoxaflutole Isoxaflutole 11 660.1

Isoxaflutole acid RPA 203328 271 928.4
Diketonitrile isoxaflutole 496 2,134.90

Lactofen Lactofen 0 —
Norflurazon Norflurazon 111 318.6

Demethyl norflurazon 137 541.8
Novaluron Novaluron 2 14.5
Oxyfluorfen Oxyfluorfen 4 70.4
Prosulfuron Prosulfuron 3 9.5
Tetraconazole Tetraconazole 56 62.0
Trifloxystrobin Trifloxystrobin 151 3,670.80

Note: —, not applicable; max conc, maximum concentration detected; PFAS, per- and
polyfluoroalkyl substances; USGS, United States Geological Survey.
aData in this table were obtained from the USGS.46
bThe USGS sampled 482 streams between 4 and 12 times each during the 6-to 14-wk
study period. Number of detections denotes the number of times the analyte was
detected in a sampling event.
cAlso a metabolic product of lambda-cyhalothrin and tefluthrin, two PFAS active ingre-
dients that were not monitored by the USGS.
dFlubendiamide was canceled in the United States in 2016 and is not currently
registered.
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Conclusions
Pesticide products increasingly contain fluorinated ingredients,
and this is happening via multiple pathways. A major contributor
of long- and short-chain PFAS (>3 fully fluorinated carbon
atoms) into pesticide products was through leaching of PFAS
from fluorinated containers (Table 4). The polymer PTFE is also
an approved inert ingredient in the United States and Canada, but
its use currently appears to be limited to about a dozen products
(Table 3). The available data also pointed to unknown sources of
long- and short-chain PFAS contamination in pesticide products,
which have yet to be identified (Table 4).

The biggest contributor of ultrashort-chain PFAS (≤3 fully fluo-
rinated carbon atoms) in pesticide products was active ingredients
and their degradates (Table 2). Although 23% of US conventional
pesticide active ingredients were organofluorines and 14% were
PFAS, those percentages jumped to 61% organofluorines and 30%
PFAS when looking just at active ingredients approved in the past
10 y (Figure 1). In our review of US EPA risk assessment docu-
ments, these PFAS active ingredients are either extremely persistent
themselves or break down into intermediate or terminal degradates
that are extremely persistent. The majority of PFAS active ingre-
dients contained a single −CF3 moiety and the few that had been
monitored are known to pollute waterways across the United States
(Table 5; Excel Tables S4 and S5).

We believe these data indicate that some pesticide products
contain complex mixtures of ultrashort-chain to long-chain PFAS
that are present in parts-per-billion concentrations for some of the
long- and short-chain PFAS and up to parts-per-hundred concen-
trations for some of the ultrashort-chain PFAS active ingredients.
The long-term impacts of using mixtures of extremely persistent
chemicals on potentially hundreds of millions of acres of US land ev-
ery year is, to us, a cause for concern. Most, if not all, PFAS in pesti-
cide products or their degradates are going to be chronic persistent
pollutants16 for the foreseeable future of humanity, and their ultimate
impact on human and environmental health are largely unknown.
Here we have identified steps the US government can take to mitigate
potential impacts of fluorinated components in pesticides with the
ultimate goal of eliminating or reducing their use altogether.
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